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ABSTRACT

The flight mission simulation software in the Jet Propulsion Laboratory’s Flight
System Testbed (1°ST) is a heterogencous, d istributed system that is built onan
interprocess communication model of asynchronous message passing rather than
remote procedure calls (RPCs). The reasoning behind this design decision is discussed;
the mechanism used to implement it (““Iramel” --- ‘|’ask Remote Asynchronous
Message Exchange Layer) is explained; the resulting software architecture is
examined; the I S'1”s operational experience with this architecture is reviewed;
conclusions are drawn, and possible directions for future work arc considered.

Keywords: message passing, RPC,interprocess communication, distributed processing,
parale processing

1. INTRODUCTION

IP1,s Flight System Testbed (1FST) was developed as a means of simulating deep space
flight missions in a controlled and instrumented environment, to aid both in
evaluating alternative mission architectures and also in exploiting reusable capabilities
to “bootstrap” mission development. As such it includes flight software running on a
“~ligllt-like” processor (a single-tmard computer running the VxWorks rea-time
operating system); spacecraft hardware simulat ion software; flight environment
simulation so ftware; and control center software that communicates with the flight
softwarc through a combination of actual flight communication protocols (CCSDS)
and simulated radio signal transmission.

The flight software executing on a computer aboard a deep-space exploration
spacecraft and the mission operations software running on computers at a flight
operations center on Larth can together be considered a single session of a distributed
appli cation, or adistributed system. Distributed systemsin general may involve an
arbitrarily large number of  processes executing onany number of computers of
possibly varying architecture, running under possibly different operating systems.
I"hose computers could be distributed over an arbitrarily broad geographic extent, and
cach process might be under the control of a different user --- or might be
autonomous. The processes don't al begin exccution at the same instant, andin fact
they might begin andend at arbitrary times. Asthe individual processes begin and
cnd, the scope and functionality of the application software session as a 1~"hole will
grow and shrink. A given process might terminate and be1eplaced by a process of
similar butupgraded capability while the session asa whole is still running (i.e., other
processes inthe session have notterminated). The session as a whole might not ever
terminate at all, since while any of itS processes --- onany computers, anywhere ---
arc still active it can'tbe said to have ended. Inshoit:unlike single-program
exccution sessions, distributed systems can be dynaniic, ainorphious, constantly
evolving, and immortal.

Buta given set of processesisn'ta distributed application session unless the processes
act in concert to solve some application problem (however broadly stated), and this




requires that data flow among them to coordinate thei operations. ‘That is, inter-
process communication is a prerequisite to distributed application processing.

Incvitably, the character of that processing is substantially dictated by the features
and limitations of the inter-process communication mechanism. For example, the
potential lifctime of asession is limited if it must be terminated in order to
reconfigure its communication pathways.

A deep spat.c flight mission system differs frommost distributed applications in that
the vast distance betweennodes of the network makes the speed of light a significant
constraint onthe data propagation performance of the software. This constrain{,
though , is justan extreme instance of a more general inter-process communication
problem, that the round-trip communication rates supported by standard protocols --
-sad therefore the performance of distributed software -- canvary appreciably with
variations in such factors as noise and congestion on the links.

A high degree of concurrent or parallel executionin adistributed application largely
solves this problem: anincrease in round-trip communication latency may increase
the time required to complete any single transaction (the lifc.time of any single thread
of processing), but the processing rate of the application as a whole -- the number of
transactions begun per second, or completed per second -- remains constant S0 long
as the number of concurrent threads of exceution is alowed to increase. This
concurrency also tends to maximize cfficient utilization of processing resources.

However, the performance of any single-threaded application process that cannot
proceed until a query have been answered (c.g., until aremote procedure cal - RPC
- has been completed) is unavoidably degraded by impairedlink performance.
Synchronous interprocess communication - the “client/server” model that is widely
used inmodern distributed software (Refs. 1, 2) - in general limits processing
concurrency and therefore the operational performance of distributed applications.

One way to address this defect is to spawn a separate thread of execution whenever an
RPC isissued. The thread that issued the RPC is suspended until the RPC is
completed, but other threads of the same process can continue and parallclism is
preserved. This approach, however, requires that programmers become comfortable
with multithreaded applications; the cognitive leverage gained by providing RPCs,
which attempt to extend the familiar function invocation programming style into
distributed applications development, is offset by the cost of mastering the intricacics
of thicad prog ramming. There arc other drawbacks as well:

«  ‘1'hereis as yet no common thread implementation standard that is as widely
available, accepted, and understood as, for example, TCP sockets,

. liven the most efficient threading systems mustdevote appreciable system
resources to thread management: stacks, scheduling, etc.

.Datainthe address space shared by multiple application threads is shared data. As
such, it must be protected from corruption due to overlapping updates; some
access serialization dc.vice such as a mutex semaphore is needed. The application
programmer must usc that device carefully, avoiding not only race conditions but
also deadlock.

Anarguably simpler strategy is simply to reject synchronous communication (R PCs)
in favor of a poitable asynchronous message exchange system equipped with a
mechanism foulinking reply messages (reccived asynchronously) to the contexts in
which they arc needed. “Tramel (I’ask Remote Asynchronous Message ixchange

1 .ayer), developed at JPL for uscin the Flight System Testbed, is such a system.




2. TRAMEL

Tramel was designed to provide a capable common platform for distributed
computing that could help toinsulate mission applications software notonly from
extreme link performance constraints but also from other development and
performance constraints imposed by most other network computing technologics.
Asynchronou s message passing gave way to RPCs in modern software largely because
it was complex to Icarn, tedious to program, and difficult to implement in arobust
fashion. The aim of Tramel's designis to deliver a message-passing system that is
more powerful and efficient, and no harder to usc, than RPCs.

‘Tramelinsulates application code as much as possible from such inter-process
communication details as connection establishment, communication protocol, and
differences in processor architecture and operating system. Application software
scssions arc self-configuring at run time; the order in which processes begin
participating in a session is immaterial. Tramel provides a built-in mechanism for
linking reply messages, received asynchronously, to tbc contexts in which tbcy arc
needed (projects, discussed below), enabling processes to converse in a pscudo-
synchronous fashion without sacrificing parallel ¢xecution. It dots so without
requiring an OS-supported multithreading system. Where multithreading is available,
developers arc free to usc it as they wish; in its absence, messages arc processed
sequentially, so access to the process% data is automatically serialized. And although
Tramel gains no specia leverage from programmers' facility with function calls, its
cvcl]t-Joop-based programming model will be familiar to developers of softwarce built
cm graphical user interface systems such as X Windows.

Finally, Tramel supports an optional publish/su bscribe communication model that
further shields application code from having to understand the configuration or state
of the distributed application session at any time. in effect, cach Tramel-speaking
process (task) plugs itself into a data "grid", much as producers and consumers of
electric power -- say, a hydroclectric plantand a kitchen toaster -- plug into an
electric power grid. A Tramcl process inscrts into the data grid whatever data it
produces, without having to know much about the consumer(s ) of that data, and it
draws from the grid whatever data it requires without having to know much about the
producer(s).

2.1 Application Structure

The basis of Tramel is a peer-to-pccr ctircc.t data transmission systemmodeledon
objcc,t-oriented programming concepts: if operating system tasks (threads, processes)
canbe thought of as coarse-graiacd “objects’, thenTramel canbe regarded asa
mechanism for message exchange among those objects. Each message is tagged with
some application-specific integer, called asubject, that identifics the type of the
message; message subjects arc analogous to "method selectors’ in object-oricntccl
programmiiag languages such as Smalltalk. Lach message may also optionally have
conltent, an arbitrary array of bytes, analogous to the argument(s) of a Smalltalk
message.

The general term for a Tramel-speaking task, thread, or process is node; each node
has a ‘I'ramel data structure called a node stare that manages the data required to
support communication between this node and others. A node cansend a message to a
specified node, refer (relay) amessage it has received to some other specified node,
subscribe to all published messages having aspecified subject, publish a message, or
reply to amecssage.



The Tramel application programming model is based on event-driven processing;
most application code is BON-com pute-intensive and is invoked only from the event
loop inresponse to the detection of system events. (This is similar to the way X
Windows applications arc normally organized. The Tramel proxy system, a
mechanism that enables software which doesn’t{it this model tointcroperate with
‘Tramelnodes, is discussed later.) Node-specific callback functions arc specificd for
the subjects of all messages the node is prepared to respond to, regardiess of whether
or not the node has subscribed to those subjects. On receipt of a message, Tramel
automatically passes the message to the designated message handling function.

A node can also specify a callback function to be invoked uponreceipt of a reply to a
given message. Moreover, a node can specify a callback function to be invoked when
aspecified length of time bas passed since, for example, transmission of amessage to
which areply is expected. The Tramel project mechanismused to implement both of
these capabilities. A project can be thought of as “something a node is doing" that
may continuc across multiple exchanges of messages and/or timeout expirations,
somewhat like an extremely lightweight thread of exccutionand somewhat like the
"long transactions’ supporicd by some object database management systems. Each
node may havc an arbitrary number of concurrent active projects.

Two kinds of events may occur in the course of a project: recciptof a reply message
and expiration of a time limit. Associated with each project is a callback function
that ‘I'ramel automatically invokes whenever any such project event occurs. Each
project may also have a context, a user-dcfillcd data object that persists throughout
the project’s duration and enables the callback functions for asingle project to
communicate among themsclves over time.

The arrivalof an original or reply message and the expiration of a timer are three of
the types of events' 1'ramc] can be used to manage. Tramel also provides facilities for
responding to three other types of events: the arrival of data at designated file
descriptors not used by Tramel (such as pipes) and two kinds of changes in “message
space” configuration -- the registrationy of a new node of a specified name and the
termination ofa spccified node.

2..?. Message spaces

A set of nodes, all of which ---and no others --- can potentially exchange messages
with onc another via Tramel, is a message space (see Figure 1); a message space can
be thought of as a functional network of processes that is built on top of (but
generally ignorant of) some physical network of cables and host machines.

Livery message space is a session of the use of some distributed application, identified
by an application name. Multiple sessions ofa single application (for example, a
"production” session and a"test" or "development” session) may exist at the same
time. Distinct sessions of the same application are distinguished by the names of the
authorities that arc responsible for configuring and ranning them. At thc same time,
a single authority might be responsible for sessions of multiple applications, e.g.,

there might be a “test” session of a “payroll” application and also a “test” session of a
“payables’ application. So a message space can be thought of as a section in amatiix
of two dimensions, application and authority, and it is uniquely identified by the
combination of its application name and its authority name.

The performance of amessage space may sometimes be enhanced by partitioning it
into multiple regions. Message space regions correspond roughly to regions of
network geography, such as subnets, andin practice tbcy usually correspond roughly
to regions of physical geography; they arc identificd by sire names. Regions of
multiple message spaces may, of course, coexist at the same physical/network site.



That is, the "test payroll” message space might have an"albany" region and a
"cleveland" region, and the “test payables’ mcssage space might also have "albany”
and"cleveland" regions, The site names "albany" and "cleveland" identify
displacements along athird Tramel dimension, site; any region can be thought of as a
section inamatrix of three dimensions -- application, authority, and site -- and it is
uniquely identified by the combination of its application name, its authority name,
and its site name.
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¥igure 1: Tramel functional architecture

Every message space always comprises at least one region, and each node resides
within (is registered in) some region; in the simplest case all nodes of the message
space residein the samereg ion. Eachregion is served by a registration service
dacmon, or registrar, which is responsible for monitoring the health of all nodesin
the region and for propagating four kinds of message space configuration changes:
node registrations and terminations, subscriptions, and unsubscriptions. On receipt of
onc of these reconfiguration messages from a node in its own region, the registrar
immediately propagates the message to every other nodein the same region anti then
to the registrars of al other regions in the message space; on receiving such a message

from a remote region’s registrar, the registrar propagates it to all nodesin its own
region.

The registrars themselves register with a central configuration service daemon at
some well-known hostandport number. Any Tramel software installation must have
at least one configuration service dacmon running at all times in order to enable
registrars andnodes to reg ister, and al registrars and nodes of the same message space
must register through the same con figuration sciver; the registrars and nodes for any
number of message spaces may register withthe same configuration service dacmon.

2.3 Node registration




Each node has a name, an application-specific ASCII string containing no whitespace,
which generally indicates its function within the application but nced not uniquely
identify it within its message space. Ilachnodc aso has onc or more “network
identities”, onc for each underlying communication protocol ("tcp", “fife’, or
"vxpipe") on which the node is prepared toreceive messages. A ncw node joins a
message space by registering itself within some region of the message space, i.e., by
announcing its name and its network identitics to the region's  registrar.

However, knowledge of how to communicate with that registrar can’t be built in at
compile time because the relevant registrar might be running on different network
hosts at different times, For this reason, the first step inregistering a ncw node is to
contact the configuration service dacmon. (The host name and port number of the
configuration service dacmon arc normally supplied as environment variables.) The
configuration server tells the new node how to contact its registrar. The node requests
a node number from the registrar and registers. Theregistrar ensures that all other
nodes in the message space learn the ncw node's name, node id, and network

identities. “1'hose nodes in turn announce their own names, node 11)s, and network
identities to the ncw node.

To sum up: the detailed configuration of any ‘I'ramcl message space is developed
dynamically and automatically at run time as the members of the message space
register themsclves. In fact, wc can more formally define the term “region” as the set
of all nodes that issue their registration, termination, subscription, and unsubscription
messages through a given registrar.

2.4 Application scaling

Several aspects of the design of Tramelare aimed at enabling the system to support
large and small applications equally well.

Tramelstores project data and message management rules in arrays that arc
directly indexed by, respectively, project numbers and subject numbers. This
enables Tramel to scale relatively well for large numbers of projects and subjects:
the time cost of routing a message to the relevant callback is constant regardless
of the size or complexity of the message space.

Tramel's region partitioning scheme distributes the load of propagating
reconfiguration messages among multiple registrars on (normally) multiple hosts,
so that reconfiguration is parallelized; adding, regions doesn’t significantly reduce
reconfiguration speed. It also enables a new node to register quickly and to begin
immediately interacting with nearby, easily reachable nodes even if some parts of
the message space arc in other cities, continents, or regions of the solar system.
Tramel gets much of its portability from its reliance on standard file descriptors
as 1/0 paths and on the standard select system call as a mechanism for
multiplexing input. However, the number of file descriptors available to an
application program is always limited. Connections between nodes consume file
descriptors; also they arc usualy costly to establish. As the number of nodes in
an application increases, the number of potentially necessary connections
between nodes increases exponentially but the number of available file descriptors
is constant. ‘Tramel resolves this conflict by managing connections
automatically, breaking one whennecessary toreleasc a file descriptor for
another onc thatis aboutto beaccessed. A least-recciltly-uscei algorithm selects
connections to be sacrificed; this keeps the time spent i re-establishing
connections relatively small for applications in which most nodes normally
communicate only with a small number of others. (This automatic management
of connections also simplifies the usc of Tramelinapplication development,
since it cntirely hides the connections from the developer.)




All communication between nodes and dacmons, and among dacmons, is based on
TCP/IP socket connections. To minimize the overhead of establishing connections,
cach registrar keeps connections to every node in its region and to the registrars of
all other regions open at all times. This limits both the number of regions in a
message space and the number of nodes that can occupy any single region: the sum of
the region count and the number of nodes in the region must be less than the total
number of file descriptors available to the registrar.

However, even under this constraint the total number of nodes in any single message
space can be quite large. For example, a message space running under an operating
system that allows cach task to have 64 open file descriptors would be limited to
around 900 nodes: cach registrar could be serving a region of about 30 nodes and
connected to about 30 other such registrars. Doubling the number of available file
descriptors per task to 128 would quadruple the maximum message space size to about
3600 (60 regions x 60 nodes per region) and so on.

2.5 lHeartbeat monitoring

Because the number of nodes in a region is limited, it is important for a registrar
always to detect the terminations of nodes in its region so that new nodes can replace
the ones that terminated. Normally a node terminates explicitly or the loss of the
socket connection to the node indicates its termination. If the host on which a node
resides is simply powered off or rebooted, however, TCP itself is terminated on that
host and no loss of connection is transmitted to the registrar.

For this reason, nodes automatically send "heartbeat" messages to their registrars at
fixed intervals, normally every 20 scconds. The registrar interprets failure to deliver
a heartbeat within two heartbeat intervals after the prior heartbeat message as an
indication that the node has terminated. Whenever it detects the termination of a
node (cither an explicit termination or a termination imputed from loss of
conncection or heartbeat failure), the registrar informs all other nodes in the message
space of the node's demise. When the termination is imputed from a heartbeat
failure, the registrar also trics to send a message to the terminated node telling it that
it has been presumed dead; if this node is in fact still running (perhaps it had hung,
trying to write on a blocked file descriptor), it terminates immediately on receipt of
this message. This ensures that other application behavior that was triggered by the
imputed termination will not be invalidated.

2.6 Fault tolerance and automatic reconfiguration

In addition to monitoring the heartbeats of all nodes in its region, cach registrar also
acknowledges cvery heartbeat. A node expects the registrar's acknowledgment of the
prior heartbeat to arrive before the time at which it must send the next heartbeat
message, and it interprets failure to deliver an acknowledgement message by this
deadline as an indication that the registrar itself has crashed. When a registrar crash
is detected, cach node in the dead registrar's region sends a message 1o the
configuration service dacmon informing it of the registrar's demise. The
configuration scrvice daemon automatically restarts the registrar (possibly on a
different host).

These reciprocal monitoring measures make Tramel applications relatively fault
« When a node crashes, its registrar deteets the loss of heartbeat within two

heartbeat intervals and notifics the rest of the message space. Message
transmission cverywhere is unaffected.



. When a registrar crashes, its n odes detect theloss of heartbeat acknowledgement

within onc heartbeat interval and request that the registrar be restarted. During
the time that theregion has no registrar, transmission of application messages
among nodes of the message space is unaffected, but the heartbeat failures of
crashed nodes arc not detected and reconfiguration messages originating in the
region (registrations, terminations, subscriptions, and unsubscriptions) arc not
propagated to any nodes. However, after the registrar is restarted it will
cventually detect the losses of heartbeat from all crashed nodes and issue
obituaries to the message space; also, nodes that issued unpropagated
reconfiguration message.s will automatically rc-issue them (because no registrar
ever acknowledged them), eventually bringing the message space back into a
comet slate.

Since the maximum heartbeat interval is twenty seconds, within the first sixty
seconds after restart the registrar will have received heartbeat messages from every
node that is still running in the region and will thercfore know accurately the
configuration of the region. This accurate configuration information must be
delivered tonew nodes at the time they start up. For this reason, during the first
sixty seconds after the registrar restarts it accepts only connections from existing
nodes in the region; if it accepted a connection from anew node before being certain
of the status of all old ones, it would runthe risk of delivering incorrect information
to the new node.

2.7 Symbolic names for subject numbers

Message subjects, as noted above, arc integers with application-defined semantics.
This minimizes the cost of including subject 1" formation (in effect, message type) in
every message, and it makes Tramel's intet nal processing simpler and faster: Framel
records subscription and message handling information in dynamically allocated and
possibly sparse arrays that arc indexed by subject number. This means, though, that
message management control arrays must belarge enough to accommodate the
largest subject numbers used inthe application. The use of extremely large subject
numbers will therefore cause these arrays to consume huge amounts of memory. In
general, it is best for a'Tramel application to usc the smallest subject numbers
possible, starting with 1.

One way to ensure this is to cite message subjects by symbolic name in application
code, rather than cite the subject numbers themselves. This is because the mapping
of subject names to numbers, and vice versa, is performed by subject service functions
which communicate with a subject service daemon.

Each message space can have at most one subject service dacmon, which manages a
private database of subject definitions for the message space. }ach subject definition
pairs a subject name with a subject number and, optionally, a message content format
string. The dacmon itself assigns numbers sequentialy (starting at 1 ) to subject
names, in the order in which the subject names arc declarcdtoit. An application
node declares a subject name by invoking one of the subject service library functions.
Once asubject has been declared, other subject service library functions enable all
nodes in the message space to determine the. number corresponding to its name or the
name corresponding to its number.

Inaddition to conserving memory, citing subjects by name can also help to reduce
crror in large system development, can simplify the dynamic definition of new
message subjects at run time, and can provide a mechanism to aid in linking multiple
messaga? spaces. Note, though, that the use of the Tramel subject service is strictly
optional,



2.8 Message transmission reliability

Normally ‘Tramel attempts to guarantee the in-order delivery of every byte of
application message data entrusted to it. Although Tramel could be layered on top of
virtually any transport-level data communication protocol, this design goal limits the
pool of potentialimplementations to those based on reliable protocols such as
TCPAP, POSIX FIIFOs, and VxWorks pipes. Moreover, when application code cals a
Tramel message transmission function, controlis normally returned to the
application only when the message has been completely transmitted --- though not
nccessarily received --- by the underlying protocol; if the protocol cannot complete
the transmission (e.g., the protocol is TCP/IP and the socket connection is blocked),
Tramel waits for the channel to beunblocked. Thatis, T ramel normally assures hat
data production is not permitted to outstrip data consumption anywhere in the

message space.

1 lowever, in some circumstances this commitment to reliable and orderly data flow
may be unnccessary or even undesirable: the application may require that controlbe
returned to it immediately, or it may be permissible to drop some messages. In this
case, Iramel configuration functions may beinvoked to bead the rules,

Disabling flow control causes Trame! to return control to the application
immediately on any message transmission, regardless of whether or not the message
hasbeen completely transmit itted. When flow control is disabled and tile initial
attempt to transmit a message was only partially successful (part butnotall of the
message was transmitted), Tramel retains the balance of the message in aninternal
buffer and transparently attempts to retransmit it whenever the opportunity arises.
‘Tramel never sends partial messages.

Normally, any message that could not be even partially transmitted on first attempt
is retained for retransmission in the same way. That is, reliable message delivery is
still guaranteed even with flow control disabled. Hlowever, tile buffering of
undelivered messages may cause ‘I'ramelto consume more memory than we're willing
to allocate to message transmission. If the undelivered messages are expendable we
can further modify the node's message transmission behavior by disabling,
retransmission as well.

With retransmission disabled, any message that cannot be even partly transmitted is
simply discarded. Reliable delivery is sacrificed, butcontrol is immediately rc.turned

to the application on any message transmission and potential memory consumption
isminimized.

2.9 Notes on the architecture of Tramel

The syntax of the message content format strings mentioned earlier must be defined
by a separate presentation layer implementation; it is opaque to, and is not used by,
the Tramel subject definitionservice or Tramel itself. Thatis, Tramel is a relatively
low-level communication system, in that the content of a Tramel message is simply
an arbitrarily long array of bytes. InlISO terms, Tramelis session-layer software;
message semantics arc leftto the application or presentation layer.

Conscquently there are no ‘Tramel compiler extensions or application preprocessors
for message content marshalling and unmarshalling, as provided by many RPC-based
systems. A new programis added to a Tramel application simply by including, the
Tramel header file, embedding Trame! function invocations in the source code,
compiling (using any C compiler), and linking with the Tramel library. Naturally, the
application developer may choose to marshal the content of a message in some
platform-independent form, c.g., by using XDR. But this is an application decision;



marshalling overhead isincurt cd not by Tramelbut by the application, and the nature
of the marshaling is leftto the developer's discretion.

Every Tramel node is self-coatainccl, and all arc peers. Thercisno central message
muter or Tramel communication “run-time’. The only dacmon processes required to
operate a Tramel application arc those discussed above that cnable the propagation
of message space rcconfiguration messages; the only other configuration elements of
aTramcl application arc a handful of optional environment variables. ‘1’ here arc no
configuration files other than those that arc builtautomatically by the daemons to
cnable them to restart correctly. During application message exchange operations,
Tramel gets all the information it nceds directly from the arguments passed by
application code when Tramel library functions arc called.

2.10 integration with other softwarc

Tramel has so far been ported to SunOS 4.1.3 and Solaris 2 on Sparc machines, to
AlXon 1{ S6000 workstations, 10 both VxWorks andIR1XS onMips hardware, and to
VxWorks on Motorola 68040 -based and Powcrl’ C-based single-board computers.
Integration modules have been written to enable software that uses X Windows or is
written in ‘t'cl to participate in a’l'ramel application universe. A 1.abView interface is
also available, as is an interface that supports rcal-time programming under VxWorks.

In addition, a Tramel “proxy” system has been developed. 1t enables software that
doesn’t readily fitthe Tramel programming, mode] -  in which computationally non-
intensive callback functions arc invoked from event loops — to interact with nodes
of aTramel message space. Bricfly, a Tramelproxy client invisibly spawns a
separate “proxy” process which registers as a message space node. The client
participates inthe message space indirectly, through a pipe to the proxy. As such,
the client itself is exempt from heartbeat cycle discipline and can poll for messages,
“sample” the content of the latest messages of specified subject, issue synchronous
querics, etc.

3. ST SOFITWARE ARC] HTECTURE
Figure 2 illustrates the architecture of the ST flight simulation software.

“Flight software” -- -software that could,in theory, be installed in a flight computer
with little or no modification and used to operate a spacecraft -- is rigorously
segregated from “support equipment” -- software that simulates spacecraft hardware
or the flight environment. That is, messages arc never passed directly between flight
software clements and simulation software clements; instead, flight software clements
communicate with simulation software across flighl-like hardware interfaces (e.g., an
1553 bus oran RS232 seria line) or at least “black box” simulations of those
interfaces. Theintent is to minimize the number of instrumentation “scars” in the
flight software, for two reasons: (1) to maximize the fidelity of flight simulations,
and (2) to produce, as one cffect of the developmentof the FST, a growing body of
reusable, non-mission-specific flight software that could be used on future flight
projects toreduce spacecraft development cost.

Toscrve this pul-pose, two distinet Tramelmessage spaces arc used inFST flight
simulation: an “fsw” message spaccandan “sc” message space. Because message
gpaces arc digoint, flight so ftware is guaranteed not to be dependent on simulation
message exchange.



In the current “baseling” configuration, the flight software message space includes:

- aradio receiver interface node, which extracts command data from the
radio’s output bit stream;

« asimple executive node (“scquence manager™), which is responsible for
exccuting command scquences;

-+ an on-board clock node (“time manager), which publishes activity
synchronization messages atl-liz and 10- Iz intervals;

- anattitude and articulation control system(AACS), comprising a half-dozen
nodes, whit.1) computes estimated attitude from sensor output at 10-11z.
intervals and activates thrusters to align actual spacecraft attitude with the
commanded attitude;

- apower systeminterface node, which activates power system hardware
clements in response to commands and iSSUes power system telemetry
MESSages,

- aradio system (RF)interface node, which controls the configuration of the
RI* hardware clements inresponse to commands and issues RI telemetry
MESSages,

- aremote engincering unit (REU) interface node, which does analog-to-digital
conversion of the data from a variety of engincering hardware subsystems and
issues that dataincngincering telemetry messages;

« acamera interface node, which activates photographic hardware in response
to commands and issucs the resulting images in telemetry messages;

- atelemetry management system, which collects telemetry (i.e., subscribes to
telemetry messages), packages it according to CCSDS standards, and meters its
release to the radio transmitter according to commanded downlink rules.
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Figure 2: Idight System Testbed software architecture




The support equipment message space includes:

a flight dynamics simulation node (Dshell) that models thrusters and gyms
and continuously recomputes (normally at 10-1 Iz intervals) the attitude of
the spacecraft as it spins in simulated space;

- ascene generation node that produces synthetic camera images with reference
to spacecraft trajectory, time, spacecraft attitude, star catalogues, and known
ecphemerides;

.+ apower system simulation node, which computes power production from
solar panels with reference to spacecraft attitude and known solar
ephemerides;

- agraphica spacecraft attitude visualization node, named Dview, which
displays an animated representation of the simulated spacecraft reflecting
changes in the spacecraft’s attitude over time.

Normally all of the fight software runs on a single VxWorks “target” processor so
that the computational load on a flight computer can be accurately simulated.
Support equipment software runs on a heterogencous mix of VxWorks and UNIX
platforms.

Also normal ly running on the flight processor arc two “virtual device” tasks that
encapsulate hardware interfaces in black box fashion, simulating a 1553 bus, but that
use Tramel to communicate with support equipment software: onc impersonates
valve drive electronics, issuing thruster activation messages to Dshell; the other
impersonates a gyro, receiving sensor reading messages from Dshell.

A third virtual device synchronizes the simulation environment with the flight
machine’s clock, echoing 10-11z synchronization messages to Dshell. A Tramel
proxy similarly links the camera interfacc node to tbc scene generator; in this case,
the proxy serves as a “wormhole” between the “fsw” and “sc” message spaces, The
power hardware simulation, scene generator, and graphical attitude visualizer arc al
compute-intensive, so they interact with other “sc” message space nodes through
Tramel proxies. The power interface node’s access to the power hardware simulation
is simulated in a TCP socket connection, but the Rt:U’s A-to-1) functions sample
engineering circuitry directly. An RS232 seria cable links the RIFinterface node to
the RF simulation systcm, which was developed before Tramel and has not yet been
retrofitted as a node in the support equipment message space.

4. SPACE FLIGHT SIMULATION IN THE FST

Flight mission simulation software developed in the 1'ST has used Tramel for event
management and data communication since early 1995. Under Tramel, FST flight
software running under VxWorks on a single-board computer can be commanded from
aTclshell running on a Silicon Graphics workstation and monitored by l.abView
“virtual instruments’ on a Sparcstation, ancl all of these clements of software can be
stopped, moved to different computers (even different types of computer, with
different operating systems), and restarted -- whilc the application is running --
without ateration of any source code or configuration file text.

As an cxamplc of the flexibility a fforded by the use of asynchronous message passing
= and, in particular, the publish/subscribe model -- asthe organizing principle of the
I'S'I’ software architecture, consider the attitude dataproduced by the fli.gilt dynamics
simulation system.

T'he carliest usc of real-time attitude data from Dshellin the I ST was as a critical
source of feedback to the flightsoftwarce’s attitude control system: it enabled the



AACS and Dshellto run together in a closed loop that realistically tested the control
law at the heartof attitude control.

The very same data, though, could be used to inform human users of the spacecraft’s
attitude just as readily as it informed the AACS: the Dview spacecraft visualization
program, running on a Silicon Graphics workstation, could smply be an additional
subscriber to the same messages. 1 .ikewise the scene genciator running on a separate
Spare machine could subscribe to the same spacecraft attitude data to determine what
extent of the relevant star ficldto plot in a synthetic image.

Most recently, the power system simulation software (which is implementedin
[.abView) has been modified to subscribe to attitude data as well. This enables it to
plot in real time the changes in power production from a solar panel duc to changes
in the angle between the plane of the panel and the direction of the sun with respect
tothe spacecraft. Such plots exactly track the spacccraft’s oscillation within
deadband as the attitude control system brings the spacecraft into alignment with a
commanded attitude. Dvicew gives us an accurate alternative representationof this
same oscillation -- a picturc of arotating spacccrafl -- because 1t is driven by the
same data.

The FST?s RFF simulation system will eventually be revised to use Tramel, so that it
too cansubscribe to spacecraft attitude data. 'That will enable the radio link
simulation to compute signal strength and estimated bit crmr ra(c inrecal time, based
onthe angle between the antenna and the direction of Earth with respect to the
spacecraft.

This incremental and internally consistent elaboration of the simulation environment
was inexpensive to develop, in part because Tramel insulated the developers from
most aspects of the configuration of the distributed application. The producers of
the data could concentrate on what to produce rather than how to deliver it, and the
consumers could think about how they would use the attitude data rather than how

they could get it.

Moreover, the support equipment software clements arc easy to operate in any
number of run-time SoMbipations because Tramel application configurationis
developed dynamically and automatically, While the simulation is running, ancw
feature can be added to the scenc generator and incorporated into the simulation -- or
analtogether new consumer of attitude data can be added -- simply by starting the
new program; no other element of the software is affectedin any way.

4.1 Performance

Any system that attempts to provide application software with an abstract interface
1o transport protocols will incur some overhead, but Tramel is designed to minimize
that overhead. Performance testing undertaken to date indicates that ‘I'ramel
message transmission latency in an exchanpe of 128-byte messages between two
VxWorks tasks rynning on a Heurikon HK VAL single-board computer (built on the
Motorola M68040 processor), UsingaVxWorks pipe at the transport layer, averages
somewhat under 700 microscconds; anindefinitely sustainable message exchange rate
of 1200 to 1500 messages per second could reasonably be expected.

Naturally, inessage transmission rates arc significantly different for diftferent
processors and transport protocols.  Tramel message exchange rates on the order of
S000 128-byte messages per second have been observed between processes on a
Silicon Graphics Indigo machine using TCP; between processes on a Spare Ultra and a
Silicon Graphics Indigo, communicating over TCP on an thernet, typical rates arc
onthe order of 3000 messages per second.




4.2 Problems

Version 3.0.1 of tramel is currently inuscinthe I'ST.1t addresses severa
application configuration problems thatmade earlier versions awkward to use, but the
fundamental message exchange functionality has not required substantial revision
since early 1995.

As noted earlier, not every type of application lends itself to the Tramel model of
event-clriven, non-compu te-intensive software, and not every developer is
comfortable with the Tramel programming style (characterized by callback
invocation from anevent Imp). Identifying these mismatches and resolving them,
in many cases by using the Tramel proxy system, is possibly the principal challenge
in developing software under the Tramel asynchronous message passing scheme.

5. CONCI,USIONS

Asynchronous message passing, as implemented by ‘Tramel, has simplified the
development, integration, and operation of space flight simulation software in the
Flight System Testbed. Performance has been adequate to satisfy the requirements of
the applications involved, and the system has been flexible enough to accommodate a
variety of software models.

6. PLANS JFOR FUTURE WORK

A small number of mostly internal enhancemen ts 1o Tramel are planned for the end
of 1996, but the bulk of Tramelapplication programming, functionality innow
installed. Support for additional underlying transport protocols, such as UNIX
sockets, will beadded as needed. “1 looks” are in place to support the developmentof
graphical utility software that will help programmers visualize, monitor, and debug a
distributed application session.

The FST will be further exploiting the capabilities of ‘Tramel as the Testbed software
baseline itself grows:

¢ Residual non-Tramel interprocess conminunication links will gradually be phased
out as time permits.
. Because the F ST°s reusable flight software is built on Tramel, integrating and
testing additional capabilities such as thesc should be straightforward:
- an autonomous, cm-board command scquence planner, which would issue
command sequcences to the sequence manager;
an autonomous optical navigation system, which would determinc attitude
and trajectory from images (publishcd by the camera) and propose
trajectory correction maneuvers to the planner;
an asteroid satellite detectionsystem, which would identify possible
asteroid satellites by examining sets of imagestaken over various
illumination spectra and proposc attitude adjustments (photo
opportunitics) to the planner.
The FST is not the only customer for its reusable flight software. The Pluto
Express project anti the Second-Generation Microspacecraft investigation already
use this software, and other projects may adopt it in the future.

Broader use of ‘Tramel is also possible:




Given a socket-based radio link transport protocol Such as SCPS/TP (Ref. 3),
Tramel could be used for communication between flight software clements and
their counterparts on the ground.  SCPS/TP developers have already
demonstrated that SCPS/1P will operate across a simulated one-way light timne
delay of twenty minutes; 1<1’'(~-based softwarc might not perform acceptably under
such conditions, but asynchronous message passing very likely would.

‘I'ramel has been proposed as a means of implementing, real-time publication of
annotations to space shuttle control mom documentation, as a part of the
Johnson Space Flight Center’s Electronic Document Preparation system.

In general, Tramel could be considered for any computing problem whose solution
might involve distributed and/or parallel processing,.
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